

DEPARTMENT OF

FACULTY OF HEALTH AND NAMIBIA UNIVERSITY OF SCIENCE AND TECHNOLOGY

APPLIED SCIENCES ACCOUNTING,

ECONOMICS AND FINANCE

QUALIFICATION: BACHELOR OF ECONOMICS						
QUALIFICATION CODE: 07BECO		LEVEL: 7				
COURSE CODE: ECM712s		COURSE NAME: ECONOMETRICS				
SESSION: June 2	: June 2022 PAPER: THEORY					
DURATION: 3 HOURS		MARKS: 100				
SECOND OPPORTUNITY EXAMINATION QUESTION PAPER						
EXAMINER(S)	MR. PINEHAS NANGUL	A				
MODERATOR:	Dr R. KAMATI					
INSTRUCTIONS						
Answer ALL the questions in section A and B						
2. Write clearly and neatly.						
3. Number the answers clearly.						

PERMISSIBLE MATERIALS

- 1. Scientific calculator
- 2. Pen and Pencil
- 3. Ruler

SECTION A [20 MARKS]

MULTIPLE CHOICE QUESTIONS

- 1. OLS stands for what in Econometrics?
 - a) Optimally Linearized Solution
 - b) There is no such thing in Econometrics
 - c) The only rock band that Econometricians are crazy about
 - d) Ordinary Least Squares
- 2. Data collected at a point in time is called
 - a) Cross-sectional data
 - b) Time series data
 - c) Pooled data
 - d) Panel data
- 3. Data collected for a variable over a period of time is called
 - a) Cross-sectional data
 - b) Time series data
 - c) Pooled data
 - d) Panel data
- 4. In the estimated model $\widehat{logQ_i} = 2.25 0.7logP_i + 0.02Y_i$, where p is the price and q is the quantity demanded of a certain good and Y is disposable income, what is the meaning of the coefficient on logP?
 - a) If the price increases by 1%, the demanded quantity will be 0.007% lower on average, ceteris paribus
 - b) If the price increases by 1%, the demanded quantity will be 70% lower on average, ceteris paribus
 - If the price increases by 1%, the demanded quantity will be 0.7% lower on average,
 ceteris paribus
 - d) None of the answers above is correct

- 5. In the estimated model $\widehat{logQ_i} = 2.25 0.7logP_i + 0.02Y_i$, where p is the price and q is the quantity demanded of a certain good and Y is disposable income, what is the meaning of the coefficient on logY?
 - a) If disposable income increases by a thousand dollars, the demanded quantity will be
 0.02% higher on average, ceteris paribus
 - b) If disposable income increases by a thousand dollars, the demanded quantity will be
 0.0002% higher on average, ceteris paribus
 - c) If disposable income increases by a thousand dollars, the demanded quantity will be
 2% higher on average, ceteris paribus
 - d) None of the answers above is correct
- 6. Which of the following are alternative names for the dependent variable (usually denoted by y) in linear regression analysis?
 - a) The regressand
 - b) The regressor
 - c) The explanatory variable
 - d) None of the above
- 7. . Which of the following statements is TRUE concerning OLS estimation?
 - a) OLS minimises the sum of the vertical distances from the points to the line
 - OLS minimises the sum of the squares of the vertical distances from the points to the line
 - c) OLS minimises the sum of the horizontal distances from the points to the line
 - d) OLS minimises the sum of the squares of the horizontal distances from the points to the line.
- 8. The residual from a standard regression model is defined as
 - a) The difference between the actual value, y, and the mean, y-bar
 - b) The difference between the fitted value, y-hat, and the mean, y-bar
 - c) The difference between the actual value, y, and the fitted value, y-hat
 - d) The square of the difference between the fitted value, y-hat, and the mean, y-bar

- 9. Which one of the following statements best describes the algebraic representation of the fitted regression line?
 - a) $\hat{y}_t = \hat{\alpha} + \hat{\beta}x_t + \hat{u}_t$ b) $\hat{y}_t = \hat{\alpha} + \hat{\beta}x_t$ c) $\hat{y}_t = \hat{\alpha} + \hat{\beta}x_t + u_t$

 - $y_t = \hat{\alpha} + \hat{\beta}x_t + \hat{u}_t$
- 10. Which one of the following statements best describes a Type II error?
 - a. It is the probability of incorrectly rejecting the null hypothesis
 - b. It is equivalent to the power of the test
 - c. It is equivalent to the size of the test
 - d. It is the probability of failing to reject a null hypothesis that was wrong

[80 MARKS] SECTION B

QUESTION ONE [30 MARKS]

All questions pertain to the simple (two-variable) linear regression model for which the population regression equation can be written in conventional notation as:

$$Y_i = \beta_1 + \beta_2 X_i + u_1$$
 equation 1

where Y_i and X_i are observable variables, β_1 and β_2 are unknown (constant) regression coefficients, and ui is an unobservable random error term. The Ordinary Least Squares (OLS) sample regression equation corresponding to regression equation (1) is

$$Y_i = \hat{\beta}_1 + \hat{\beta}_2 X_i + \hat{u}_i$$
 equation 2

where $\hat{\beta}_1$ is the OLS estimator of the intercept coefficient β_1 , $\hat{\beta}_2$ is the OLS estimator of the slope coefficient β_2 , u_i is the OLS residual for the i-th sample observation, and N is sample size (the number of observations in the sample).

- a) State the Ordinary Least Squares (OLS) estimation criterion. State the OLS normal equations. [5 marks]
- b) Derive the OLS normal equations from the OLS estimation criterion. [5 marks]
- c) Show that the OLS slope coefficient estimator $\hat{\beta}_1$, is a linear function of the Y_i , sample values. [10 marks]

d) Stating explicitly all required assumptions, prove that the OLS slope coefficient estimator $\hat{\beta}_2$ is an unbiased estimator of the slope coefficient β_2 . [10 marks]

QUESTION TWO [20 MARKS]

a) What do we mean by a linear regression model?

[4 marks]

b) The following are linear intrinsically linear regression models. You are required to transform them into linear regression models

i.
$$lnY_i = \frac{1}{1 + e^{\beta_1 + \beta_2 X_i + u_i}}$$
 [4 marks]

ii.
$$lnY_i = \frac{1}{\beta_1 + \beta_2 X_i + u_i}$$
 [4 marks]

iii.
$$Y_i = \frac{X^2}{\exp(\beta_1 + \beta_2 X_i + u_i)}$$
 [4 marks]

iv.
$$lnY_i = 1 + \exp(\beta_1 + \beta_2 X_i)$$
 [4 marks]

QUESTION TWO [20 MARKS]

The following is the econometric model which is presented in four different forms. You are require to interpret each of them.

a)
$$\hat{C} = -8.078 + 0.70641$$
Income [5 marks]

b)
$$\hat{c} = -18.072 + 22.73841 \text{LogIncome}$$
 [5 marks]

c)
$$\widehat{LogC}$$
= 7.203+0.000218Income [5 marks]

d)
$$\widehat{LogC} = -0.2957 + 1.0464 \text{Logincome}$$
 [5 marks]

QUESTION FOUR [10 MARKS]

The data in the table below refer to a total population of 40 families in a hypothetical community and their weekly income (I) and weekly consumption expenditure (C), both in dollars. The 28 families are divided into 5 income groups (from N\$200 to N\$1000) and the weekly expenditures of each family in the various groups are as shown in the table below.

→	200	400	600	800	1000
Income I _i					
Consumption	150	300	573	698	890
	189	350	450	798	850
Ĭ	123	287	470	700	950

5

190	390	560	758	863
	300	498	766	
	396	564	788	
		497		
		500		

a) Calculate the conditional mean and unconditional mean value of C_i [6 marks]

b) Use the answer in part a) to draw the population regression line or population regression curve [4 marks]

All the best